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1, Let ue consider the wing of finite span equal to 2a located
symmetrically with respect to the yz-plare. We willi assume that
the z-axis direction coincides with the direction of the air flow
at infinity and that the x-axis ie directed perpendicularly to the
plane symmetric to the wing, Let b(x) be the wing chord profile
of the correspording x absecissa and {(x) the circulation along
this profile, Let us denote by a(x) the geometric angle of attack
and by V the air vélocity at infinity,
On the basis of wing symmetry we have
[(x) = T(-x) ; b(x) = b(-x); abx) = a(-x); (-akx%a) (1.1)
In wing theory it is proved that | (x) satisfies the following

integro-differcontisl equation due to Prandtl (see [1], p.194; [3] )

_&H (x) - y i) at = bnve((x) (1.2)
m b{x) t-x
-8
where m 1is a constant which usuvally equald 2mw; a more accurate
value of this muiber is 5.5 (=ee Kl] , P. 104),

Bquation (1.2) &8 singular since it contains an integral which
must be interpreteé in the sense of the Cauchy principal valve. Con-
sequently it is impossible to apply the usual integral equation theory
to it. We show, below, that equation (1.2) may be replaced by a Fred-
holm equation having a rather simple structure, so bhat it may be éf-

fectively solved in mapy important practical cases (see examples below),
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2. We limit ourselves to the consideration of the case when

b(x) = y &8 - x° (~afxta) (2.1)

i st

p(x)

where p(x) 1is an analytic function on the segment E-a.a] which satise
fies the condition

p(x) 70, p(x) = p(-x) , (-atxta) (2.2)

Eviderntly, then, there exists a simply connected region T con-

taining a line within the segment [-a,a] and bounded by a smooty closed
curve L such that the function p(-) is holomorphic in T + L,
Cutting the point of the segment [-a, a] out of T we obtain the

doubly connected region which we denote by T*, The function

b(g) =\[a2 S (2.3)

(%)
ebidently will be holomorphic in T* while we have in véew below that

branch of the functicn which satisfies the condition 1

b(x) = - b_(x) = b(x) Y 0 (-atxta) (2.4)
3. Let us conslder the Cauchy type integral

8
$(%)=_1 [ L[As)as | (3.1)
2 t-%
-
which evidently represente & function holomorphic everywhere on the
Plane except the segment E-e.,a'} .

In what follows, we assume that f (x) 1is a function, continuous in

the Holder sense, on [—a,a“l and that its derivative is
rrix) = _x) §{1 (3.2)
(aE - x2)6

1, The symbole f,(x) and f (x) generally demote the limiting value
of f(%€) 1in the neighborhood of {-a,s] when 5 ~®»x of this seg-

ment from the upper or lower halfwplane respectively.



where ["*(x) 4is a function contiruous in the Holder sense on [—a,a]’
We assume that a(x) is also contingous in the Holder sense on [—a,a}
In practice « is usually constant,
From (3.1) by differentiating with respect to € and integrating
by parts, taking into sccound (1.1), we obtain
=3[ rup -zf_cgl__q (5:3)
2mi t - . ni(ac -¢
-8
In [2] N. Muskhelishvili xm established that ¢ (%) and p'(€)
for the above assumptions with respect to [ (x), are continuocusly pro-
longed from the interior point of the segment [-a,a] up to the sides of
upper hali‘-flane as well ad@ the lower, On the end-points of the segment
f—a,a} ,\*;may have a singularity oniy of logarithmic type and the integral
term on the right side of (3.3) may have singularities at these points of
order less thah 1 ,
On the basis of the wellknown properties of the Cauchy type ineegrals,
from (3.1) and (3.3) by pascsing to the limit, we obtain

[x) = Pux) -d_(x) (3.4)

a
! =m x L C .
J ) av = mifd, )+ 4 =) ] vl 0.5

By virtue of (3.4) , (3.5), and (2.4), equation (1.2) becomes

& (x) + 8;&(;) + _'(x) + B1P-(x) = MiVa(x) + 2%ag;ga; (3.6)
n(ac-x

m b, (x) m b_(x)

Let us introduce the new function

7%= [ct'(f)%%];/af?-sﬁ (3.7)

which ic evidently holomorphic in T* and continuously prolonged from
the interior point of [-a,a] to the sides of the upper and lower half-

planes, At tne points -a and a , this function may have a singularity



but only of order less thaa 1 [ 2], Then (3.6) becomes

Fo(x) - P (x) = ltiVa(x)d -x2 + 212l (3.8)

h14 a- = X
According to the Cauchy formula
) = f mg) F=(t) at + _ 1 frm as (3.9)
- omi t -‘f
L

vherse ? is a point of T,

But by virtue of (3.7) and (3.8), (3.9) yields

M%) = __f Mdt +al(a )/ at__ (3.10)
\7'2""'!'"

+ 1 2.2 Pr(s) at + u Ya2-t ﬂ;_)_ at
o) - b(t) t -§
L "

Using the Cauchy formula and theorpm, we easily obtain

f Va2- ta ¢|(t) dt = 0 (3.11)
-8 Ja - t t -‘f ‘b 2111

L
Further, by virtue of (2,1) and (3.1), we have

f_@m at = ___;.._.f‘ I[_q‘)dd'fn(t) a
i

L o(t) -3 (t- %) (o ~t)
=/1‘6d5[ g{__)__dt+1 mldj]
2m emif -t
p(o) - E‘f‘ f) r(o as (3.12)
T -
-8

By virtue of (3.1) and (3.12), we obtain from (3,10)

a
) 5.2 -} (¥
M%) #%‘ at + %%% ;/ RL%_.EL{J_I' (o) 4o 3!
-y -8
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Hence by means of passing to the limit, we obtain the formula

which we use later:

F(x) + B (=) = l&v g,(;) Ye?-2_ at - _____j p(g)non(x) I (o)ds  (3.18)
t -
-8 *
From (3.7) we have
pi(x) + __81 d>+(x> = Fo(x) ; Prx) - _s_;_SQP (x) = =F.(x) (3.159

mb(x) J—Z——E mb(x J--Z::a—w

Integrating these equations, we obtain
x
by(x) = & (0)e 10 f Sl-00x] 4ya (3.16)
/ 2_§?
Cé.(x) = q;_(o)eie(x) - fx g‘i[e(t)ux)] r.(t) at
0

S22

where X
o(x) = § at (-abxéa) (3.17)
m[ b(t) : ?
0

Because the function I'(x) 1is odd, from (3.1) we obtain

$,(0) = -_(0) = 1 r(0)

Consequently, accorditg to (3.4), we have from (3.16)

I (X) = I'(O)cos e(x) + -agxﬂ ¥ (t) + r (t) at
+
a - 3%

X
*f sinfo(t)-0(xD1[F, (¢) - _(2)] at (3.18)
2_ .2

On the basis of (3.8) amd (3.14), this equation becomes

x
I (x) = T (0) cosd(x) * I (a) ex(x) +/ Ko(x,0) T (o)do + go(x) (3.19)

-3



where

X
‘UO(X) = :g&t/ sin %gtg-e;;ﬂ at (3.20)
L1 2
0 a -t

X
g (x) = - sin[0(t)-9(x)] a(t)at

X a
v [ coslo(t)-exiar [ aladaP-e? a5 (3.21)
w a -4t o-t

0 -8,

X
K (x,0) = =8 -9 p{o)-p(t) at (3.22)
mt aS - 1;2 o-t

0

In case o = constant , as is easily seen,

g,(x) = -h\rafi sin[@(t)-e(xn + tlgo x }dt (3.23)
ﬁlﬂ taé

Let us now make the assumption which usually applies in wing theory
I'(a)=1I(-a)=0 (3.2%)
Let us consdddr the two cases with the corresponding conditions
cos 6(a) # 0 ; cos 8(a) = 0 (3.25)
For the first condition,,we obtain from (3.19) for x = a by virtue
of (3.2W)

cosb(a)

~
(WM

N
o
s

T(0) =~ 1 ¢ (a ‘
?J K,(a,0) T (0) 46 + go(a)J

-8

Substituting this in (3/19) and tzking into account (3.24) we obtain

the Fredholm integral equation

a
Ir'(x) - f k(x,0) T (o) ¢ = gtx) (3.27)
-a
where

g(x) = g,(x) - gafa)cosd(x) ; K(x,0) = Ko(x,0) - Eo(a,0)cos8(x) (3.26)

cos 8(a) cos 6(a)




By virtue of (3.24) with the second condition of (3.25), we obtain
from (3.19
a
f Ko(8,0) T(0) do + go(a) = 0 (3.29)

8

Therefore, in this case we reduce to the system

a
I'(x) = T (0)cos 8(x) +‘Zn Ko(x,0) T (a)as+ gy(x)

a

a
f Ko(e,0) I(0)dd” + go(a) = 0

-8

(3.30)

The first of these m equations contains the undetermined constant
I (0) which, generally speaking, mist be determined from the second
equation, If this comstant is not determined frmm the spedified equa-
tion)oo then it must be selected in such a way that the solution of the
first equation of (3,30) will solve the Prandtl equation (1.2).

Bquatiors (3,27) and (3.30) which are obtained, always have a simple
stmucture since}in that important particular case when the function
p(x) =\Ja2-x2/b(x) is rational, the kernels of these equations degen-
erate; i,e, have the form

,_71' P1(x) Y1(o)
i=1

But in the latter case, the desired function "(x) 1is evidently ex-
pressible in quadratures, since thesolution of equations 63.2%) and (3.30)
then reduce:ithe solution of a finite system of linsar algebraic equatiohs.
The noted cases are of great practical interest because a wing of arbvitrary
form may always be approximated by any)previonsly agsigned accurate,profiles
of specified form, Consequently the method set down above practically al-
ways leads to the effective solution of Prandtl's equation,

Y
Note: To derive integral equation (3.19), we assumed that V/ag-xalb(x)

is analytic on [~a,{3.. However, this equation in ite final form remains



a Fredholm in the case when \/az-xz/b(x) has, for example, a continuous
first order derivative on (-a,a), Equation (3.19), under these more gen-
eral assumptions, was obtained by L,G,Magnaradge [_)ﬂ.
4, Let us consider some examples
Example 1, Let there be an elliptical wing
b(x) = be J1 - z2/a? (k.1)
In thies case p(x) = constant and according to (3.22) 3Ko(x,0) = 0,
Therefore, from (3.19), by virtue of (3.24), we have
I'(x) = I"(0)coe 8(x) 4 go(x) (4.2)
while, as is evident from (3,20)
8(x) = ¥ sin"t x/a ; ¥ = 8afmb, (4.3)
The constant I (0) is determined with the aid of (3.24) if tke
first condition of (3.25) occurs, which in the given case assumes the
form cos /2 # O, If cos mx/2 = O thentthe constant I'(0) must be
determined from the condition that formula (4,2) represents the solution
of the Prandll equation, In the same way, for a wing of elliptic form at
any angle of attack o , the solttion of the Prandtl equation is constructed
in evident form with the ald of (4,2). If a = constant , then by meandsof
simple computxtidns one is convinced that (4.2) assumes the form

' {x) = I'(0)cos B(x) - Yaa¥ cos O8(x) + Uaa¥ \/;2._12
1+X 1

Now satisfying the condition I (a) = 0 and assuming that cos nx/2 4 0

we obtain the well-known formmla (see [,1'3 p. 203)

r(x) = MJaE - x2 (4.4

1+X



This formile remeins valid in thecase when cos mX/2 = 0, Feor this
it ie sufficient thet that the function cos 6(x) = cos(Karcsin x/a),
where X = 2ktl vhile k 1is an int@ger not satisfying the homogeneous
Prandtl equation (a=0) ; thie is easy to show with the aid of the sub-

stitution x = a cos§ if the well-known formle is used (see [11 ,p 202)

mw
—soen®  dg=mannV¥_ (n-an integer)
0 cos c? - caeq sin Y ,

Example 2: Let us consider a wing of the form

b(x) = b, \/1 - leaa (; + V&;f.g:.a._) (4.5)

1 + px2/a
where . 2nd ) &re each constants greater than -1,
Because in the given case

p(x) = & _1+ ux/a’
b, 1+ pyx=/gc

from (3,22) and the second relation of (3,28) by limiting the considerjtions

to the case when cos 8(a) # 0, we find

K(x,t) = 4 = u) Pr(x) + 5 -yp%t Polx) (4.6)

¢ (x) = go;!eger) - 8(x)] _ ot as
-0 1 + veZ/al

where

° (4.7)
- cos O(x) o(a)] g‘j‘l a0’ (k=1,2)
cos e(a/ 71 ? 1 + YJd2/a2

while in the given cese, as it is essy to find from (3,17} and (4.5)

8(x) = X arcsin x/a + 3 (V- arctsn x%lﬁ) for ) #0 (L4.8)

2 V ) Jac - x
0(x) = X(1+ p )arcein xfa - Au x Jaz - x° for =0  (4.9)
2 2
Suvstituting (4,6) in (3.27) and taking into account that 1" (x)
is even
T (x) = x(v- u)\f/]_(x) f(o‘) i + g(x) (4.10)

__aa+v



10,

Hence we find that

a ‘ a -/
f(x) = g(x) + [X(DJ- ®) ad - X (V=) m Cﬁ(x)
a2 + Y . aS+ y 62

-8

where g(x) 1is determined with the aid of the first formula of (3.28)
and CPl(x) is obtained from (4,7) for k=1, This formula yields
the solution to the Prandtl equation in evident form for ang angle of at-
tack o in the cace of wings given by (4,5). The importance of this for-
mala 1s easy to sstimate if it is noted that by varying the parameters u
and Y we may encompass by (U4.5) a large mumber of practical important
wing forms, For example, in case u = 0, 3} = 0,9 , we obtain the wing
which is almost rectangular as is evident from the following table

o+ o0.,5 0.6 0,7 0.8 0.9
.03 1,05 1,06 1,06 1,03 0.95 0.75

b(x) = \} 1- x2/&12i (1 + 0.9x2/a2 )

Let us note, finally, that following themethod outlined abowe, it is

possible to obtain also the expression for I'(x) in the case of wing forms

b(x) = bo\jl - x2/a? + V) x2 2 + ..“_4'&.;;;95?__
1+ px 82 + .., + ppx-0/acd

Wings of such form in the case when all b = 0 are considered by

Schmidt [5] However, his results appear less effectiv,
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